- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Pant, Avnika (2)
-
Pappu, Rohit V (2)
-
Bremer, Anne (1)
-
Dai, Yifan (1)
-
Erkamp, Nadia A (1)
-
Farag, Mina (1)
-
Fossat, Martin J (1)
-
King, Matthew R (1)
-
Knowles, Tuomas_P J (1)
-
Lalmansingh, Jared M (1)
-
Lew, Matthew D (1)
-
Lin, Andrew Z (1)
-
Lundberg, Emma (1)
-
Mittag, Tanja (1)
-
Ouyang, Wei (1)
-
Posey, Ammon E (1)
-
Ruff, Kiersten M (1)
-
Vahey, Michael D (1)
-
Wu, Tingting (1)
-
#Tyler Phillips, Kenneth E. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Biomolecular condensates form via processes that combine phase separation and reversible associations of multivalent macromolecules. Condensates can be two- or multiphase systems defined by coexisting dense and dilute phases. Here, we show that solution ions partition asymmetrically across coexisting phases defined by condensates formed by intrinsically disordered proteins or homopolymeric RNA molecules. Our findings were enabled by direct measurements of the activities of cations and anions within coexisting phases of protein and RNA condensates. Asymmetries in ion partitioning between coexisting phases vary with protein sequence, macromolecular composition, salt concentration, and ion type. The Donnan equilibrium set up by the asymmetrical partitioning of solution ions generates interphase electric potentials known as Donnan and Nernst potentials. Our measurements show that the interphase potentials of condensates are of the same order of magnitude as membrane potentials of membrane-bound organelles. Interphase potentials quantify the degree to which microenvironments of coexisting phases are different from one another. Importantly, and based on condensate-specific interphase electric potentials, we reason that condensates are akin to capacitors that store charge. Interphase potentials should lead to electric double layers at condensate interfaces, thereby explaining recent observations of condensate interfaces being electrochemically active.more » « less
-
King, Matthew R; Ruff, Kiersten M; Lin, Andrew Z; Pant, Avnika; Farag, Mina; Lalmansingh, Jared M; Wu, Tingting; Fossat, Martin J; Ouyang, Wei; Lew, Matthew D; et al (, Cell)Nucleoli are multicomponent condensates defined by coexisting sub-phases. We identified distinct intrinsically disordered regions (IDRs), including acidic (D/E) tracts and K-blocks interspersed by E-rich regions, as defining features of nucleolar proteins. We show that the localization preferences of nucleolar proteins are determined by their IDRs and the types of RNA or DNA binding domains they encompass. In vitro reconstitutions and studies in cells showed how condensation, which combines binding and complex coacervation of nucleolar components, contributes to nucleolar organization. D/E tracts of nucleolar proteins contribute to lowering the pH of co-condensates formed with nucleolar RNAs in vitro. In cells, this sets up a pH gradient between nucleoli and the nucleoplasm. By contrast, juxta-nucleolar bodies, which have different macromolecular compositions, featuring protein IDRs with very different charge profiles, have pH values that are equivalent to or higher than the nucleoplasm. Our findings show that distinct compositional specificities generate distinct physicochemical properties for condensates.more » « less
An official website of the United States government
